Birzeit University					
Department of Physics					
Quantum Mechanics Phys635					
Fall 2018					
First Exam, Dec. 11th 2018					

- 1. Consider a particle in three-dimensional space, whose state vector is $|\psi\rangle$ and whose wave function is
 - $\psi(r) = \langle r | \psi \rangle$. Let A be an observable which commutes with $\vec{L} = \vec{R} \times \vec{P}$, the orbital angular momentum of the particle. Assuming that A, L^2 and L_z form a set of commuting observables let $|n, l, m \rangle$ their common eigenkets, whose eigenvalues are, respectively, a_n , $l(l+1)\hbar^2$ and $m\hbar$ (the index n is assumed to be discrete).

Let $U(\phi)$ be the unitary operator defined by:

$$U(\phi) = e^{\frac{-iL_z\phi}{\hbar}}$$

where ϕ is a real dimensionless parameter. For an arbitrary operator K, we call \tilde{K} the transform of K by the unitary operator $U(\phi)$:

$$\tilde{K} = U(\phi)KU^{\dagger}(\phi)$$

- (a) (15 points) We set $L_{+} = L_{x} + iL_{y}$, $L_{-} = L_{x} iL_{y}$. Calculate $\tilde{L}_{+}|n, l, m >$ and show that L_{+} and \tilde{L}_{+} are proportional; calculate the proportionality constant.
- (b) (15 points) Express L_x terms of \tilde{L}_x , \tilde{L}_y , and \tilde{L}_z . What geometrical transformation can be associated with the transformation of L into \tilde{L}
- 2. (20 points) Show that the Clebsch-Gordon coefficients are the matrix element of a unitary matrix that change the basis from $|j_1j_2, m_1m_2 >$ to |JM >
- 3. A particle of spin S =3/2.
 - (a) (15 points) Write the matrix representation for S_x , S_y , S_z and S^2
 - (b) (10 points) let $|\psi(t=0)\rangle = \frac{1}{2\sqrt{2}}(|\frac{3}{2}\frac{3}{2}\rangle + \sqrt{3}|\frac{3}{2}\frac{1}{2}\rangle + \sqrt{3}|\frac{3}{2}\frac{1}{2}\rangle + |\frac{3}{2}\frac{-3}{2}\rangle)$ Show that it is an eigenvector of S_x .
 - (c) (8 points) If the particle a magnetic moment $\vec{\mu} = g\vec{S}$, and is placed in uniform magnetic field that points in the x-direction. The particle initial wave-function is given in the previous part. Find $\langle \hat{S}_y \rangle(t)$
- 4. We define the standard components of a vector operator V as the three operators:

$$V_1^{(1)} = -\frac{1}{\sqrt{2}}(V_x + iV_y)$$
$$V_0^{(1)} = V_z$$
$$V_{-1}^{(1)} = \frac{1}{\sqrt{2}}(V_x - iV_y)$$

Using the standard components $V_p^{(1)}$ and $W_q^{(1)}$ of the two vector operators V and W, we construct the operators:

$$[V^{(1)} \otimes W^{(1)}]_M^{(K)} = \sum_p \sum_q < 11; pq | KM > V_p^{(1)} W_q^{(1)}$$

where the < 1, 1; p, q | K, M > are the Clebsch-Gordan coefficients entering into the addition of two angular momenta 1

(a) (10 points) Show that $[V^{(1)} \otimes W^{(1)}]_0^{(0)}$ is proportional to the scalar product $V \cdot W$ of the two vector operators.

- (b) (10 points) Show that the three operators $[V^{(1)} \otimes W^{(1)}]_M^{(1)}$ are proportional to the three standard components of the vector operator $V \times W$
- (c) (10 points) Express the five components $[V^{(1)} \otimes W^{(1)}]_M^{(2)}$ in terms of V_z , $V \pm = V_x \pm i V_y$, W_z , $W \pm = W_x \pm i W_y$

Good Luck ت						
Question:	1	2	3	4	Total	
Points:	30	20	33	30	113	
Score:						