Birzeit University
Department of Physics
Quantum Mechanics Phys635
Fall 2018
First Exam, Dec. 11th 2018

1. Consider a particle in three-dimensional space, whose state vector is $|\psi\rangle$ and whose wave function is $\psi(r)=<r \mid \psi>$. Let A be an observable which commutes with $\vec{L}=\vec{R} \times \vec{P}$, the orbital angular momentum of the particle. Assuming that A, L^{2} and L_{z} form a set of commuting observables let $\mid n, l, m>$ their common eigenkets, whose eigenvalues are, respectively, $a_{n}, l(l+1) \hbar^{2}$ and $m \hbar$ (the index n is assumed to be discrete).

Let $U(\phi)$ be the unitary operator defined by:

$$
U(\phi)=e^{\frac{-i L_{z} \phi}{\hbar}}
$$

where ϕ is a real dimensionless parameter. For an arbitrary operator K, we call $\tilde{\mathrm{K}}$ the transform of K by the unitary operator $U(\phi)$:

$$
\tilde{K}=U(\phi) K U^{\dagger}(\phi)
$$

(a) (15 points) We set $L_{+}=L_{x}+i L_{y}, L_{-}=L_{x}-i L_{y}$. Calculate $\tilde{L_{+}} \mid n, l, m>$ and show that L_{+}and $\tilde{L_{+}}$are proportional; calculate the proportionality constant.
(b) (15 points) Express L_{x} terms of $\tilde{L_{x}}, \tilde{L_{y}}$, and $\tilde{L_{z}}$, What geometrical transformation can be associated with the transformation of L into \tilde{L}
2. (20 points) Show that the Clebsch-Gordon coefficients are the matrix element of a unitary matrix that change the basis from $\mid j_{1} j_{2}, m_{1} m_{2}>$ to $\mid J M>$
3. A particle of $\operatorname{spin} S=3 / 2$.
(a) (15 points) Write the matrix representation for S_{x}, S_{y}, S_{z} and S^{2}
(b) (10 points) let $\left\lvert\, \psi(t=0)>=\frac{1}{2 \sqrt{2}}\left(\left|\frac{3}{2} \frac{3}{2}>+\sqrt{3}\right| \frac{3}{2} \frac{1}{2}>+\sqrt{3}\left|\frac{3}{2} \frac{1}{2}>+\right| \frac{3}{2} \frac{-3}{2}>\right)\right.$ Show that it is an eigenvector of S_{x}.
(c) (8 points) If the particle a magnetic moment $\vec{\mu}=g \vec{S}$, and is placed in uniform magnetic field that points in the x-direction. The particle initial wave-function is given in the previous part. Find $\left.<\hat{S}_{y}\right\rangle(t)$
4. We define the standard components of a vector operator V as the three operators:

$$
\begin{array}{r}
V_{1}^{(1)}=-\frac{1}{\sqrt{2}}\left(V_{x}+i V_{y}\right) \\
V_{0}^{(1)}=V_{z} \\
V_{-1}^{(1)}=\frac{1}{\sqrt{2}}\left(V_{x}-i V_{y}\right)
\end{array}
$$

Using the standard components $V_{p}^{(1)}$ and $W_{q}^{(1)}$ of the two vector operators V and W , we construct the operators:

$$
\left[V^{(1)} \otimes W^{(1)}\right]_{M}^{(K)}=\sum_{p} \sum_{q}<11 ; p q \mid K M>V_{p}^{(1)} W_{q}^{(1)}
$$

where the $<1,1 ; p, q \mid K, M>$ are the Clebsch-Gordan coefficients entering into the addition of two angular momenta 1
(a) (10 points) Show that $\left[V^{(1)} \otimes W^{(1)}\right]_{0}^{(0)}$ is proportional to the scalar product $V \cdot W$ of the two vector operators.
(b) (10 points) Show that the three operators $\left[V^{(1)} \otimes W^{(1)}\right]_{M}^{(1)}$ are proportional to the three standard components of the vector operator $V \times W$
(c) (10 points) Express the five components $\left[V^{(1)} \otimes W^{(1)}\right]_{M}^{(2)}$ in terms of $V_{z}, V \pm=V_{x} \pm i V_{y}, W_{z}, W \pm=W_{x} \pm i W_{y}$

Good Luck

Question:	1	2	3	4	Total
Points:	30	20	33	30	113
Score:					

